Sains Malaysiana 52(11)(2023): 3307-3323
http://doi.org/10.17576/jsm-2023-5211-21
Carbon Quantum Dots Coupled Au Nanoparticle as Fluorescence-Based
DNA Biosensors for Dengue Virus Detection
(Titik Kuantum Karbon Digandingkan Au Nanozarah Berasaskan Pendarfluor Biosensor DNA untuk Pengesanan Virus Denggi)
YAKUBU NEWMAN MONDAY1,4,
JAAFAR ABDULLAH1,2,*, NOR AZAH
YUSOF1,2, SURAYA ABDUL RASHID2, RAFIDAH HANIM SHUEB3 & HAMIDAH SIDEK5
1Department
of Chemistry, Faculty of Science, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
2Institute
of Nanoscience and Nanotechnology, Universiti Putra
Malaysia, 43400 UPM Serdang, Selangor, Malaysia
3Department
of Medical Microbiology & Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
4Department of Chemistry, Faculty of Science, Federal University Lokoja, P.M.B 1154, Lokoja, Kogi State, Nigeria
5Industrial Centre of Innovation in
Sensor, SIRIM Berhad, No.1, Persiaran Dato’ Menteri, Section 2,
P.O. Box 7035, 40700 Shah Alam, Selangor, Malaysia
Received:
9 August 2023/Accepted: 1 December 2023
Abstract
This
study introduces a novel DNA biosensor probe comprising carbon quantum dots
(CQDs) derived from palm kernel shell biomass and gold nanoparticles (AuNPs) synthesized via the citrate reduction method. The
CQDs were doped with ethylenediamine using a
hydrothermal process employing a one-pot synthesis method in an autoclave batch
reactor. The resulting CQDs exhibited exceptional photoluminescent (PL) properties, with an excitation wavelength of 360 nm and an emission
wavelength of 430 nm. Transmission electron microscope (TEM) images showed the
average particle sizes of the CQDs and AuNPs to be 2
nm and 15 nm, respectively. Carboxylic acid-modified CQDs were coupled to
amine-modified ssDNA (PA) to construct the biosensor
through the amine coupling technique. The AuNPs were
modified through thiol coupling with Rhodamine B,
L-cysteine, and thiol-modified ssDNA (PT). Both PA
and PT probes were designed to complement the DEN-3 virus oligonucleotide. CQDs
acted as fluorophores and energy donors in the biosensor, while the AuNPs functioned as nanoquenchers of fluorophores and energy acceptors. The resulting probe pair, CQDs-PA, and AuNPs-PT demonstrated remarkable Förster resonance energy transfer (FRET) and exhibited fluorescence turn-on upon
titration with DEN-3. The
biosensor displayed excellent sensitivity with a logarithmic calibration
equation of 5.22LogC + 20.79 (R2 = 0.979), covering a linear range of 0.001 nM to 100 nM. The limit of
detection (LOD) was determined to be 1.57 ± 0.71 nM.
This innovative DNA biosensor, incorporating CQDs and AuNPs,
holds promising potential for sensitive and specific detection of the DEN-3 virus.
Keywords: Carbon quantum dots; dopants; FRET;
palm kernel shell; quantum yield
Abstrak
Kajian ini memperkenalkan prob biosensor DNA baharu yang terdiri daripada titik kuantum karbon (CQD) yang diperoleh daripada biojisim tempurung isirong sawit dan nanozarah emas (AuNPs) yang disintesis melalui kaedah penurunan sitrat. CQD telah didop dengan etilenadiamina menggunakan proses hidroterma kaedah sintesis satu periuk dalam reaktor kelompok autoklaf. CQD yang terhasil menunjukkan sifat fotoluminesen (PL) yang luar biasa, dengan panjang gelombang pengujaan 360 nm dan panjang gelombang pancaran 430 nm. Imej mikroskop elektron penghantaran (TEM) menunjukkan purata saiz zarah CQD dan AuNP masing-masing adalah 2 nm dan 15 nm. CQD yang diubah suai asid karboksilik digabungkan dengan ssDNA (PA) yang diubah suai amina untuk membina biosensor melalui teknik gandingan amina. AuNPs telah diubah suai melalui gandingan tiol dengan Rodamina B, L-cisteina dan ssDNA (PT) yang diubah suai tiol. Kedua-dua prob PA dan PT direka untuk melengkapkan oligonukleotida virus DEN-3. CQD bertindak sebagai fluorofor dan penderma tenaga dalam biosensor manakala AuNP berfungsi sebagai nano-pelindapkejut fluorofor dan penerima tenaga. Pasangan prob yang terhasil, CQDs-PA dan AuNPs-PT menunjukkan pemindahan tenaga resonans Förster (FRET) yang luar biasa dan menunjukkan pendarfluor hidup semasa pentitratan dengan DEN-3. Biosensor memaparkan kepekaan yang sangat baik dengan persamaan penentukuran logaritma 5.22LogC + 20.79 (R2 = 0.979), meliputi julat linear 0.001 nM hingga 100 nM.
Had pengesanan (LOD) ditentukan sebagai 1.57 ± 0.71 nM.
Biosensor DNA yang inovatif ini menggabungkan CQD dan AuNP, berpotensi untuk pengesanan sensitif dan khusus virus DEN-3.
Kata kunci: Dopan; FRET; hasil kuantum; tempurung isirong sawit; titik kuantum karbon
REFERENCES
Adegoke, O. & Park, E.Y. 2017. Bright luminescent optically
engineered core/alloyed shell quantum dots: An ultrasensitive signal transducer
for dengue virus RNA via localized surface plasmon resonance-induced hairpin hybridization. Journal of Materials Chemistry B 5(16): 3047-3058. https://doi.org/10.1039/c7tb00388a
Bajpai, S.K., D’Souza, A. & Suhail,
B. 2019. Blue light-emitting carbon dots (CDs) from a milk protein and their
interaction with Spinacia oleracea leaf cells. International Nano Letters 9(3): 203-212. https://doi.org/10.1007/s40089-019-0271-9
Bhamore, J.R., Jha, S., Singhal, R.K., Park, T.J. & Kailasa,
S.K. 2018a. Facile green synthesis of carbon dots from Pyrus pyrifolia fruit for assaying of Al3+ ion via chelation enhanced fluorescence mechanism. Journal of
Molecular Liquids 264(2017): 9-16.
https://doi.org/10.1016/j.molliq.2018.05.041
Bhamore, J.R., Jha, S., Park, T.J. & Kailasa, S.K. 2018b. Fluorescence sensing of Cu2+ ion and imaging of fungal cell by ultra-small fluorescent carbon dots derived
from Acacia concinna seeds. Sensors and
Actuators, B: Chemical 277: 47-54.
https://doi.org/10.1016/j.snb.2018.08.149
Bhattacharya,
D., Mishra, M.K. & De, G. 2017. Carbon dots from a single source exhibiting tunable luminescent colors through the modification of surface functional groups in ORMOSIL films. Journal
of Physical Chemistry C 121(50): 28106-28116.
https://doi.org/10.1021/acs.jpcc.7b08039
Chowdhury,
A.D., Takemura, K., Khorish,
I.M., Nasrin, F., Tun,
M.M.N., Morita, K. & Park, E.Y. 2020. The detection and identification of
dengue virus serotypes with quantum dot and AuNP regulated localized surface plasmon resonance. Nanoscale
Advances 2(2): 699-709. https://doi.org/10.1039/c9na00763f
Darwish, N.T., Yatimah, B.A. & Khor, S.M. 2015. An introduction to dengue-disease
diagnostics. Trends in Analytical Chemistry 67: 45-55.
https://doi.org/10.1016/j.trac.2015.01.005
De, B. & Karak, N. 2013. A green and facile approach for the
synthesis of water soluble fluorescent carbon dots from banana juice. RSC
Advances 3(22): 8286-8290. https://doi.org/10.1039/c3ra00088e
Dong, W.,
Zhou, S., Dong, Y., Wang, J., Ge, X. & Sui, L. 2015. The preparation of ethylenediamine-modified fluorescent carbon dots and their
use in imaging of cells. Luminescence 30(6): 867-871.
https://doi.org/10.1002/bio.2834
Draz, M.S. & Shafiee, H. 2018.
Applications of gold nanoparticles in virus detection. Theranostics 8(7): 1985-2017. https://doi.org/10.7150/thno.23856
Du, F.,
Zhang, M., Li, X., Li, J., Jiang, X., Li, Z., Hua, Y., Shao, G., Jin, J., Shao, Q., Zhou, M. & Gong, A. 2014. Economical
and green synthesis of bagasse-Derived fluorescent
carbon dots for biomedical applications. Nanotechnology 25(31): 315702.
https://doi.org/10.1088/0957-4484/25/31/315702
E. Alahi, M.E. & Mukhopadhyay,
S.C. 2017. Detection methodologies for pathogen and toxins: A review. Sensors
(Switzerland) 17(8): 1885. https://doi.org/10.3390/s17081885
Gao, T.,
Xing, S., Xu, M., Fu, P., Yao, J., Zhang, X., Zhao, Y. & Zhao, C. 2020. A
peptide nucleic acid–Regulated fluorescence resonance energy transfer DNA assay
based on the use of carbon dots and gold nanoparticles. Microchimica Acta 187(7): 375.
https://doi.org/10.1007/s00604-020-04357-w
Gao, Y.,
Zhu, Z., Xi, X., Cao, T., Wen, W., Zhang, X. & Wang, S. 2019. An aptamer-based hook-effect-recognizable three-line lateral
flow biosensor for rapid detection of thrombin. Biosensors and
Bioelectronics 133: 177-182. https://doi.org/10.1016/j.bios.2019.03.036
Gedda, G., Lee, C.Y., Lin, Y.C. & Wu, H.F. 2016. Green
synthesis of carbon dots from prawn shells for highly selective and sensitive
detection of copper ions. Sensors and Actuators, B: Chemical 224:
396-403. https://doi.org/10.1016/j.snb.2015.09.065
Gosink, J. 2014. Early laboratory diagnosis of dengue infections. Medlab Magazine 3: 014-016.
Guerrini, L., Alvarez-Puebla, R.A. & Pazos-Perez,
N. 2018. Surface modifications of nanoparticles for stability in biological
fluids. Materials (Basel) 11(7): 1154.
https://doi.org/10.3390/ma11071154
Hamd-Ghadareh, S. & Salimi, A. 2019.
DNA-functionalized dye-loaded carbon dots: Ultrabright FRET platform for ratiometric detection of Hg(II) in
serum samples and cell microenvironment. Ionics 25(9): 4469-4479.
https://doi.org/10.1007/s11581-019-02999-2
Hoan, B.T., Tam, P.D. & Pham, V-H. 2019. Green synthesis of
highly luminescent carbon quantum dots from lemon juice. Journal of
Nanotechnology 2019: 2852816. https://doi.org/10.1155/2019/2852816
Jahwarhar Izuan Abdul Rashid & Nor Azah Yusof. 2018. Laboratory
diagnosis and potential application of nucleic acid biosensor approach for
early detection of dengue virus infections. Biosciences, Biotechnology
Research Asia 15(2): 245-255. https://doi.org/10.13005/bbra/2628
Laverdant, J., de Marcillac, W.D., Barthou, C., Chinh, V.D., Schwob, C., Coolen, L., Benalloul, P., Nga, P.T. & Maitre, A. 2011. Experimental determination of the
fluorescence quantum yield of semiconductor nanocrystals. Materials 4(7): 1182-1193. https://doi.org/10.3390/ma4071182
Li, L., Li,
L., Chen, C.P. & Cui, F. 2017. Green synthesis of nitrogen-doped carbon
dots from ginkgo fruits and the application in cell imaging. Inorganic
Chemistry Communications 86: 227-231.
https://doi.org/10.1016/j.inoche.2017.10.006
Ma, X., Li,
S., Hessel, V., Lin, L., Meskers, S. & Gallucci, F. 2019. Synthesis of luminescent carbon quantum
dots by microplasma process. Chemical Engineering
and Processing - Process Intensification 140: 29-35.
https://doi.org/10.1016/j.cep.2019.04.017
Muhammad Mailafiya, M., Abubakar, K., Danmaigoro, A., Chiroma, S.M.,
Abdul Rahim, E.B., Mohd Moklas,
M.A. & Zakaria, Z.A.B. 2019. Evaluation of in
vitro release kinetics and mechanisms of curcumin-loaded cockle
shell-derived calcium carbonate nanoparticles. Biomedical Research and
Therapy 6(12): 3518-3540. https://doi.org/10.15419/bmrat.v6i12.580
Nasrin, F., Chowdhury, A.D., Takemura,
K., Lee, J., Adegoke, O., Deo,
V.K., Abe, F., Suzuki, T. & Park, E.Y. 2018. Single-step detection of
norovirus tuning localized surface plasmon resonance-induced optical signal between gold nanoparticles and quantum dots. Biosensors
and Bioelectronics 122: 16-24. https://doi.org/10.1016/j.bios.2018.09.024
Noremylia Mohd Bakhori,
Nor Azah Yusof, Abdul Halim
Abdullah & Mohd Zobir Hussein. 2013. Development of a fluorescence resonance energy transfer
(FRET)-Based DNA biosensor for detection of synthetic oligonucleotide of Ganoderma boninense. Biosensors 3(4): 419-428. https://doi.org/10.3390/bios3040419
Nur Alia Sheh Omar, Yap Wing Fen, Jaafar Abdullah, Yasmin Mustapha Kamil,
Wan Mohd Ebtisyam Mustaqim Mohd Daniyal,
Amir Reza Sadrolhosseini & Mohd Adzir Mahdi. 2020. Sensitive detection of dengue
virus Type 2 E-proteins signals using self-assembled monolayers/reduced
graphene oxide-PAMAM dendrimer thin film-SPR optical sensor. Scientific
Reports 10(1): 1-15. https://doi.org/10.1038/s41598-020-59388-3
Nur Alia Sheh Omar, Yap Wing Fen, Jaafar Abdullah, Che Engku Noramalina Che Engku Chik & Mohd Adzir Mahdi. 2018. Development of an optical sensor based
on surface plasmon resonance phenomenon for diagnosis
of dengue virus E-protein. Sensing and Bio-Sensing Research 20: 16-21.
https://doi.org/10.1016/j.sbsr.2018.06.001
Plennevaux, E., Sabchareon, A., Limkittikul, K., Chanthavanich,
P., Sirivichayakul, C., Moureau,
A., Boaz, M., Wartel, T.A., Saville, M. & Bouckenooghe, A. 2016. Detection of dengue cases by
serological testing in a dengue vaccine efficacy trial: Utility for efficacy
evaluation and impact of future vaccine introduction. Vaccine 34(24):
2707-2712. https://doi.org/10.1016/j.vaccine.2016.04.028
Pudza, M.Y., Abidin, Z.Z.,
Abdul-Rashid, S., Md Yassin, F., Noor, A.S.M. &
Abdullah, M. 2019. Synthesis and characterization of fluorescent carbon dots
from tapioca. ChemistrySelect 4(14):
4140-4146. https://doi.org/10.1002/slct.201900836
Rashid,
J.I.A., Yusof, N.A., Abdullah, J., Hashim, U. & Hajian, R. 2015.
A novel disposable biosensor based on SiNWs/AuNPs modified-screen printed electrode for dengue virus
DNA oligomer detection. IEEE Sensors Journal 15(8): 4420-4421.
https://doi.org/10.1109/JSEN.2015.2417911
Sabzehparvar, F., Cherati, T.R., Mohsenifar, A., Shojaei, T.R.
& Tabatabaei, M. 2019. Immobilization of gold
nanoparticles with rhodamine to enhance the
fluorescence resonance energy transfer between quantum dots and rhodamine; New method for downstream sensing of infectious
bursal disease virus. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 212: 173-179. https://doi.org/10.1016/j.saa.2018.12.050
Saheeda, P., Sabira, K., Joseph, J. & Jayaleksmi, S. 2019. On the intriguing emission
characteristics of size tunable carbon dots derived
from functionalized multi-walled carbon nanotubes. Materials Chemistry and
Physics 225: 8-15. https://doi.org/10.1016/j.matchemphys.2018.11.062
Samsulida Abdul Rahman, Rafidah Saadun, Nur Ellina Azmi, Nurhayati Ariffin, Jaafar Abdullah, Nor Azah Yusof, Hamidah Sidek & Reza Hajian. 2014.
Label-free dengue detection utilizing PNA/DNA hybridization based on the
aggregation process of unmodified gold nanoparticles. Journal of
Nanomaterials 2014: 839286. https://doi.org/10.1155/2014/839286
Segal, L.
& Eggerton, F.V. 1961. Infrared spectra of ethylenediamine and the dimethylethylenediamines. Applied Spectroscopy 15(4): 116-117.
https://doi.org/10.1366/000370261774426939
Sentürk, E., Aktop, S., Sanlibaba, P. & Tezel, B.U. 2018. Biosensors: A
novel approach to detect food-borne pathogens. Applied Microbiology: Open
Access 4(3): 4-11. https://doi.org/10.4172/2471-9315.1000151
Shamsipur, M., Nasirian, V., Mansouri, K., Barati, A., Veisi-Raygani, A. & Kashanian,
S. 2017. A highly sensitive quantum dots-DNA nanobiosensor based on fluorescence resonance energy transfer for rapid detection of nanomolar amounts of human papillomavirus 18. Journal of
Pharmaceutical and Biomedical Analysis 136: 140-147.
https://doi.org/10.1016/j.jpba.2017.01.002
Shojaei, T.R., Mohd Salleh,
M.A., Sijam, K., Abdul Rahim, R., Mohsenifar,
A., Safarnejad, R. & Tabatabaei,
M. 2016. Detection of citrus tristeza virus by using
fluorescence resonance energy transfer-based biosensor. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 169: 216-222. https://doi.org/10.1016/j.saa.2016.06.052
Shrivastava, A. & Gupta, V.B. 2011. Methods for the determination
of limit of detection and limit of quantitation of the analytical methods. Chronicles
of Young Scientists 2(1): 21-25. https://doi.org/10.4103/2229-5186.79345
Shylesh, Sankaranarayanapillai, Alex
Wagener, Andreas Seifert, Stefan Ernst, and Werner R Thiel.
2010. Mesoporous organosilicas with acidic frameworks
and basic sites in the pores: An approach to cooperative catalytic reactions. Angewandte Chemie (International Edition) 49(1): 184-187.
https://doi.org/10.1002/anie.200903985
Stefanakis, D., Philippidis, A., Sygellou, L., Filippidis, G., Ghanotakis, D. & Anglos, D. 2014. Synthesis of
fluorescent carbon dots by a microwave heating process: Structural
characterization and cell imaging applications. Journal of Nanoparticle
Research 16(10): Article No. 2646.
https://doi.org/10.1007/s11051-014-2646-1
Sun, L-H.,
Wang, S., Shi, W-L., Zhang, S., Chen, X. & Cai,
Q. 2012. A new type of anionic surfactant with four carboxylates for the
preparation of mesoporous materials. Frontiers of Materials Science 6(3): 268-277. https://doi.org/10.1007/s11706-012-0173-5
Sun, X.,
Xing, Z., Ning, R., Asiri, A.M. & Obaid, A.Y. 2014. Carbon nanobelts as a novel sensing platform for fluorescence-enhanced DNA detection. Analyst 139(10): 2318-2321. https://doi.org/10.1039/c3an02364h
Suria Mohd Saad, Jaafar Abdullah, Suraya Abd Rashid, Yap Wing Fen, Faridah Salam & Lau Han Yih. 2020. A carbon dots based fluorescence sensing for the
determination of Escherichia coli O157:H7. Measurement: Journal of
the International Measurement Confederation 160: 107845.
https://doi.org/10.1016/j.measurement.2020.107845
Tseng, M-H.,
Hu, C-C. & Chiu, T-C. 2019. A fluorescence turn-on probe for sensing thiodicarb using rhodamine b
functionalized gold nanoparticles. Dyes and Pigments 171: 107674.
https://doi.org/10.1016/j.dyepig.2019.107674
Wang, J.
& Qiu, J. 2016. A review of carbon dots in
biological applications. Journal of Materials Science 51(10): 4728-4738.
https://doi.org/10.1007/s10853-016-9797-7
Wang, J.,
Zhang, P., Huang, C., Liu, G., Leung, K.C.F. & Wáng,
Y.X.J. 2015. High performance photoluminescent carbon
dots for in vitro and in vivo bioimaging:
Effect of nitrogen doping ratios. Langmuir 31(29): 8063-8073. https://doi.org/10.1021/acs.langmuir.5b01875
Wasik, D., Mulchandani, A. & Yates,
M.V. 2018. Salivary detection of dengue virus NS1 protein with a label-free immunosensor for early dengue diagnosis. Sensors
(Switzerland) 18(8): 1-10. https://doi.org/10.3390/s18082645
WHO. 2018.
Dengue Vaccines: WHO Position September 2018. Weekly Epidemiological Record 93 (36): 457-476.
https://www.who.int/immunization/policy/position_papers/who_pp_dengue_2018_summary.pdf?ua=1
Wu, P., Li,
W., Wu, Q., Liu, Y. & Liu, S. 2017. Hydrothermal synthesis of
nitrogen-doped carbon quantum dots from microcrystalline cellulose for the
detection of Fe3+ ions in an acidic environment. RSC Advances 7(70): 44144-44153. https://doi.org/10.1039/c7ra08400e
Xiao, Q.,
Chen, M., Nie, W., Xie, F.,
Yu, X. & Ma, C. 2023. A fluorescent biosensor for streptavidin detection
based on double-hairpin DNA-templated copper
nanoparticles. Biosensors 13(2): 168.
https://doi.org/10.3390/bios13020168
Yakubu, N.M., Abdullah, J., Yusof, N.A.,
Abdul Rashid, S. & Shueb, R.H. 2021. Facile
hydrothermal and solvothermal synthesis and
characterization of nitrogen-doped carbon dots from palm kernel shell
precursor. Applied Science 11(4): 1630.
https://doi.org/https://doi.org/10.3390/app11041630
Yan, B.,
Wang, F., He, S., Liu, W., Zhang, C., Chen, C. & Lu, Y. 2022.
Peroxidase-like activity of Ru–N–C nanozymes in
colorimetric assay of acetylcholinesterase activity. Analytica Chimica Acta 1191:
339362. https://doi.org/10.1016/j.aca.2021.339362
Yang, G.,
Li, L., Lee, W.B. & Ng, M.C. 2018. Structure of graphene and its disorders:
A review. Science and Technology of Advanced Materials 19(1): 613-648.
https://doi.org/10.1080/14686996.2018.1494493
Yang, R., Guo, X., Jia, L., Zhang, Y.,
Zhao, Z. & Lonshakov, F. 2017. Green preparation of
carbon dots with mangosteen pulp for the selective
detection of Fe3+ ions and cell imaging. Applied Surface Science 423: 426-432. https://doi.org/10.1016/j.apsusc.2017.05.252
Yang, Z-C.,
Wang, M., Yong, A.M., Wong, S.Y., Zhang, X-H., Tan, H., Chang, A.Y., Li, X.
& Wang, J. 2011. Intrinsically fluorescent carbon dots with tunable emission derived from hydrothermal treatment of
glucose in the presence of monopotassium phosphate. Chemical
Communications 47(42): 11615-11617.
Yin, B.,
Deng, J., Peng, X., Long, Q., Zhao, J., Lu, Q., Chen, Q., Li, H., Tang, H.,
Zhang, Y. & Yao, S. 2013. Green synthesis of carbon dots with down- and
up-conversion fluorescent properties for sensitive detection of hypochlorite
with a dual-readout assay. Analyst 138(21): 6551-6557. https://doi.org/10.1039/c3an01003a
Zhou, Y., Desserre, A., Sharma, S.K., Li, S., Marksberry,
M.H., Chusuei, C.C., Blackwelder,
P.L. & Leblanc, R.M. 2017. Gel-like carbon dots: Characterization and their
potential applications. ChemPhysChem 18(8):
890-897. https://doi.org/10.1002/cphc.201700038
Zhang, G.
2013. Functional gold nanoparticles for sensing applications. Nanotechnology
Reviews 2(3): 269-288. https://doi.org/10.1515/ntrev-2012-0088
*Corresponding author; email: jafar@upm.edu.my
|